Архимед

Легенды рассказывают, что Архимед забывал о пище, подолгу не бывал в бане и готов был чертить везде: в пыли, пепле, на песке, даже на собственном теле. Однажды, в ванне, его вдруг осенила мысль о выталкивающей силе, действующей на погруженное в жидкость тело и, забыв обо всем, голый, бежал он по улицам Сиракуз с победным кличем: «Эврика!» («Я нашел!»). Его мало заботит людская молва. Некоторые свои озарения он даже не считает нужным записывать. Архимед — автор многочисленных открытий, гениальный изобретатель, известный во всем греческом мире благодаря конструкции многих механизмов: машины для орошения полей, водоподъемного механизма, системы рычагов, блоков для поднятия больших тяжестей (кранов), военных метательных аппаратов. Он соорудил систему блоков, с помощью которой один человек смог спустить на воду огромный корабль «Сиракосия». Крылатыми стали произнесенные тогда слова Архимеда: «Дайте мне точку опоры, и я поверну Землю». Инженерный гений Архимеда с особой силой проявился при осаде Сиракуз. Воины римского консула Марцелла были надолго задержаны у стен города невиданными машинами: мощные катапульты прицельно стреляли каменными глыбами в бойницах были установлены метательные машины, выбрасывающие грады ядер, береговые краны поворачивались за пределы стен и забрасывали корабли противника каменными и свинцовыми глыбами, крючья подхватывали корабли и бросали их вниз с большой высоты, системы вогнутых зеркал поджигали корабли. Историк Плутарх описывает ужас, царивший в рядах римских воинов. Он утверждал, что Архимед «один был душой обороны, приводил все в движение и управлял защитой». Но мы не знаем конструкции его боевых машин, мы можем судить о них только по работам Плутарха и других историков. Архимед именно о тех своих открытиях, благодаря которым приобрел славу, не оставил ни одного сочинения. Древний Рим так и не узнал всех секретов машин Архимеда и единственным трофеем Марцелла, украшением его дома стала знаменитая «сфера» Архимеда — небесный глобус, модель небесных светил. Архимед погиб от меча римского легионера. Он был поглощен работой и не заметил, что город уже занят римлянами. Когда посыльный солдат явился к нему и потребовал, чтобы он немедленно явился к Марцеллу, Архимед поморщился, лениво, как от надоедливой мухи, отмахнулся от него и, не поднимая глаз от чертежа, пробурчал: «Не мешай, я вычисляю». Солдат выхватил меч и убил его. На своей могильной плите Архимед завещал выгравировать шар и цилиндр — символы его геометрических открытий. Могила заросла травой и место это было забыто очень скоро. Лишь через 137 лет после его смерти Цицерон разыскал в Сиракузах этот могильный камень, на котором были уже стерты временем часть знаков. А потом могила опять затерялась, уже навсегда.

ДОСТИЖЕНИЯ В МАТЕМАТИКЕ

Задача о трисекции угла. Задача о делении угла на три равные части возникла из потребностей архитектуры и строительной техники. При составлении рабочих чертежей, разного рода украшений, многогранных колоннад, при строительстве, внутренней и внешней отделки храмов, надгробных памятников древние инженеры, художники встретились с необходимостью уметь делить окружность на три равные части, а это часто вызывало затруднения. Оригинальное и вместе с тем чрезвычайно простое решение задачи о трисекции угла дал Архимед.

Измерение круга. Задача о квадратуре круга заключается в следующем: построить квадрат, площадь которого была бы равна площади данного круга. Большой вклад в решение этой задачи внес Архимед. В своем трактате «Измерение круга» он доказывает следующие три теоремы:
Теорема первая: Площадь круга равна площади прямоугольного треугольника, один из катетов которого равняется длине окружности круга, а другой радиусу круга.
Теорема вторая: Площадь круга относится к площади квадрата, построенного на диаметре, приблизительно, как 11:14.
Теорема третья: C-3d d, где С -длина окружности, а d-ее диаметр. Откуда, d Спираль Архимеда. Архимедова спираль плоская трансцендентная кривая, уравнение которой в полярных координатах имеет вид: . Архимедова спираль описывается точкой M, движущейся равномерно по прямой d, которая вращается вокруг точки O, принадлежащей этой прямой. В начальный момент движения M совпадает с центром вращения O прямой. Длина дуги между точками и : . Площадь сектора, ограничиваемого дугой архимедовой спирали и двумя радиус-векторами и , соответствующими углами и : .

Инфинитезимальные методы. В группу инфинитезимальных методов входят: метод исчерпывания, метод интегральных сумм, дифференциальные методы. Одним из самых ранних методов является метод интегральных сумм. Он применялся при вычислении площадей фигур, объемов тел, длин кривых линий. Для вычисления объема, тело вращения разбивается на части, и каждая часть аппроксимируется (приближается) описанными и вписанными телами, объемы которых можно вычислить. Теперь остается выбрать аппроксимирующие сверху и снизу тела таким образом, чтобы разность их объемов могла быть сделана сколь угодно малой.

Дифференциальным методом Архимед находил касательную к спирали.

Оптика. Свои оптические теории Архимед строил на основе аксиом. Одной из таких аксиом являлась обратимость хода луча — глаз и объект наблюдения можно поменять местами. Весь же круг вопросов геометрической оптики -«катоптрики» был очень широк. Архимед занимался следующими проблемами: почему в плоских зеркалах предметы сохраняют свою натуральную величину, в выпуклых — уменьшаются, а в вогнутых — увеличиваются, почему левые части предметов видны справа и наоборот, когда изображение в зеркале исчезает и когда появляется, почему вогнутые зеркала, будучи поставлены против Солнца, зажигают поднесенный к ним трут, почему в небе видна радуга, почему иногда кажется, что на небе два одинаковых Солнца. С «катоптрикой» связана легенда о поджоге Архимедом римских кораблей во время осады Сиракуз.

Введение понятия центра тяжести. Архимед первым ввел понятие центра тяжести в механике. Он заменяет тела их теоретическими моделями. Определение центра тяжести формулируется так: «. центром тяжести произвольного тела является некоторая точка, расположенная внутри него, обладающая тем свойством, что если за нее мысленно подвесить тяжелое тело, то оно останется в покое и сохранит первоначальное положение.» Понятие центра тяжести в дальнейшем было использовано Архимедом для установления законов рычага.

Открытие законов рычага. Архимед вводит законы рычага на базе геометрии путем добавления к геометрическим аксиомам несколько «механических» аксиом:
1. Равные тяжести на равных длинах уравновешиваются, на неравных же длинах не уравновешиваются, но перевешивают тяжести на большей длине.
2. Если при равновесии тяжестей на каких-нибудь длинах к одной из тяжестей будет что-то прибавлено, то они не будут уравновешиваются, но перевесит та тяжесть, к которой будет прибавлено.

Архимед приводит аксиомы и на их основании доказывает теоремы. Наиболее важной является теорема об определении центра тяжести двух или нескольких фигур с помощью уравновешивания на рычаге (такое уравновешивание произойдет, если точка подвеса окажется в центре тяжести).
Закон рычага: рычаг находится в равновесии тогда, когда силы, действующие на него обратно пропорциональны плечам этих сил: .

Гидростатика. Архимед выводит законы гидростатики, используя физическую модель «идеальной жидкости». Ученый установил, что:
1)»поверхность всякой жидкости, установившейся неподвижно, будет иметь форму шара, центр которого совпадает с центром Земли.»
2)»тела, равнотяжные с жидкостью, будучи опущены в эту жидкость, погружаются так, что никакая их часть не выступает над поверхностью жидкости и не будет двигаться вниз.»
3)»тело более легкое, чем жидкость, будучи опущено в эту жидкость, погружается настолько, чтобы объем жидкости, соответствующий погруженной части тела, имел вес, равный весу всего тела.»
4)»тела более легкие, чем жидкость, опущенные в эту жидкость, будут погружаться, пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела.» Открытие этой теоремы связывают с легендой о проверке плотности в короне.
Римский архитектор Витрувий, сообщая о поразивших его открытиях разных ученых, приводит следующую историю: «Во время своего царствования в Сиракузах Гиерон после благополучного окончания всех своих мероприятий дал обет пожертвовать в какой-то храм золотую корону бессмертным богам. Он условился с мастером о большой цене за работу и дал нужное ему по весу количество золота. В назначенный день мастер принес свою работу царю, который нашел ее отлично исполненной; после взвешивания корона оказалась соответствующей выданному весу золота. После этого был сделан донос, что из короны была взята часть золота и вместо него примешано такое же количество серебра. Гиерон разгневался на то, что его провели, и не находя способа уличить это воровство, попросил Архимеда хорошенько подумать об этом. Тот, погруженный в думы по этому вопросу, как-то случайно пришел в баню и там, опустившись в ванну, заметил, что из нее вытекает такое же количество воды, каков объем его тела, погруженного в ванну. Выяснив себе ценность этого факта, он, не долго думая, выскочил с радостью из ванны, пошел домой голым и громким голосом сообщал всем, что он нашел то, что искал. Он бежал и кричал одно и то же по-гречески: «Эврика, эврика!» («Нашел, нашел!)». Затем, исходя из своего открытия, он, говорят, сделал два слитка, каждый такого же веса, какого была корона, один из золота, другой из серебра. Сделав это, он наполнил сосуд до самых краев и опустил в него серебряный слиток, и. соответственное ему количество воды вытекло. Так он нашел, какой вес серебра соответствует какому определенному объему воды. Затем он произвел такое же исследование для золотого слитка. Потом таким же методом был определен объем короны. Она вытеснила воды больше, чем золотой слиток и кража была доказана.

Методика измерений в астрономии, угломер. Для расчета расстояния до Солнца Архимеду надо было знать видимый угловой диаметр Солнца. С этой целью он изготовил угломер: длинная линейка, помещенная на отвесную подставку. На линейку он поставил небольшой цилиндр, обточенный на токарном станке.

Угломер Архимеда был очень примитивным, но методика измерений была безупречной.

Архимед получил два значения угла- 1/164 и 1/200 доли прямого угла, между которыми находится искомый видимый поперечник Солнца. Если перевести эти значения в наши меры, то получатся углы 35’55» и 27′. Действительный видимый поперечник Солнца (32′) лежит в найденных Архимедом пределах.

Небесный глобус Архимеда. Основой механического глобуса Архимеда был обычный звездный глобус, на поверхность которого наносятся звезды, фигуры созвездий, небесный экватор и эклиптика- линия пересечения плоскости земной орбиты с небесной сферой. Вдоль эклиптики расположены 12 зодиакальных созвездий, через которые движется Солнце, проходя одно созвездие в месяц. Не выходят за пределы зодиака и другие небесные тела — Луна и планеты. Глобус закрепляется на оси, направленной на полюс мира (полярную звезду), и погружается до половины в кольцо, изображающее горизонт. Поворачивая шар на нужные углы, можно было легко узнать вид неба в любое время. Какая-то часть шара никогда не оказывалась выше горизонта. В этой части находились созвездия южного полушария, неизвестные ученым того времени.

Солнце, Луна и звезды на обычном звездном глобусе отсутствуют, их невозможно изобразить, так как они непрерывно меняют свое положение по отношению к звездам. Архимед заставил перемещаться макеты этих светил с помощью специальных механизмов.

Этот планетарий демонстрировал все видимые движения небесных тел и фазы Луны.

Система мира Архимеда. Одним из важнейших исследований Архимеда в области астрономии было вычисление расстояний между планетами. Эти расчеты дают возможность воссоздать облик «вселенной Архимеда». В ее середине находится Земля, вокруг нее обращаются Луна и Солнце. Орбиты трех ближайших планет Меркурия, Венеры и Марса — очерчены вокруг него. Радиусы планетных орбит кратны между собой и относятся как 1:2:4. По данным Архимеда, относительное (по сравнению с расстоянием от Земли до Солнца) значение радиуса орбиты Меркурия составляет 0,36 (в действительности 0,39, ошибка 8%), орбиты Венеры 0,72 (совпадает с действительным), Марса 1,44 (в действительности 1,52, ошибка 5%). Расчеты Архимеда, относящиеся к другим планетам, оказались неверными.

Интересной особенностью система мира Архимеда является пересечение орбит Сатурна и Юпитера с орбитой Марса. Это представление является неверным, но оно говорит о том, что Архимед представлял себе планеты как отдельные тела, летящие в пространстве.

Водоподъемный винт. Водоподъемный винт был изобретен Архимедом для поливки полей. Вскоре его стали применять далеко за пределами Сицилии. Раньше водоподъемный винт называли «улиткой».

Зеркала. Во время осады Сиракуз ярко проявился инженерный талант Архимеда. Сохранилось всего три описания штурма Сиракуз: Полибия (IIв. до н.э.), Тита Ливия (Iв. до н.э.) и Плутарха (Iв. н.э.). Ни в одном из этих рассказов нет упоминаний не только о сожжении кораблей зеркалами, но и вообще о применении огня.

В VIв. вопрос о зеркалах Архимеда разбирает византийский математик, скульптор и архитектор, строитель знаменитого Софийского собора в Константинополе Анфимий. В своем сочинении Анфимий стремится дать реконструкцию зеркал из радиуса действия, равного дальности полета стрелы: «При помощи многих плоских зеркал можно отразить в одну точку такое количество солнечного света, что его объединенное действие вызовет загорание. Этот опыт можно сделать с помощью большого числа людей, каждый из которых будет держать зеркало в нужном направлении. Но чтобы избежать суматохи и путаницы, удобнее применить раму, в которой закрепить 24 отдельных зеркала с помощью пластин или, еще лучше, на шарнирах.

Оборонительные машины ближнего действия. Для обороны города Сиракузы Архимед создал машины, которые могли приподнимать вражеские корабли и топить их. Эти машины:
— были передвижными. Они скрывались за стенами и, только когда было нужно, выдвигались за пределы укреплений. Кроме того, их, вероятно, надо было передвигать вдоль стены к тому месту, где в этот момент совершалось нападение.
— имели стрелу, поворачивавшуюся вокруг вертикальной и горизонтальной оси. На короткой цепи к концу стрелы была прикреплена «лапа». Этой лапой машинист мог захватить нос корабля и приподнять его настолько, чтобы погрузить в воду корму или часть весельных люков. Тогда вода хлынет внутрь, корабль начнет погружаться и переворачиваться. Расчеты показали, что для этого достаточна сила, составляющая 10% веса корабля. Грузоподъемность архимедовых машин могла составлять 10-15 тонн.

1. Лурье С.Я., Архимед, М.-Л., 1945
2. Каган В.Ф., Архимед. Краткий очерк о жизни и творчестве, М.-Л., 1951
3. Смышляев В.К. О математике и математиках. — Йошкар-Ола: Наука, 1977.

www.univer.omsk.su

АРХИМЕД (ок. 287–212 до н.э.)

Разделы статей:

Телеграм-канал

Добавили уже 7553 раз!

Архимед (др.-греч. . — 287 до н. э. — 212 до н. э.) — древнегреческий математик, механик и инженер из Сиракуз. Отцом его был астроном Фидий, который привил сыну с детства любовь к математике, механике и астрономии. Архимед родился в Сиракузах (о. Сицилия) и жил в этом городе в эпоху 1-й и 2-й Пунических войн. Научную деятельность начал как механик и техник.

Жизнь

В Александрии Египетской — научном и культурном центре того времени — Архимед познакомился со знаменитыми александрийскими учеными: астрономом Кононом, разносторонним учёным Эратосфеном, с которыми потом переписывался до конца жизни. В то время Александрия славилась своей библиотекой, и которой было собрано более 700 тыс. рукописей. По-видимому, именно здесь Архимед познакомился с трудами Демокрита, Евдокса и других замечательных греческих геометров, о которых он упоминал и своих сочинениях.

Архимед вернулся в Сицилию зрелым математиком, однако первые его труды были посвящены механике. Принцип рычага, учение о центре тяжести и закон Архимеда являются важнейшими достижениями Архимеда в области механики. Архимед был не только математиком и механиком, но и одним из крупнейших инженеров и конструкторов своего времени. Машина для поливки полей «Улитка», водоподъемный винт (винт Архимеда), разнообразные военные машины для метания копий и дротиков, для поднятия и потопления кораблей увековечили славу Архимеда, способствовали обрастанию фактов из его жизни вымыслами и легендами.

Архимед был близок к сиракузскому царю Гиерону II. Под руководством Архимеда сиракузяне построили множество машин разного назначения. Во время 2-й Пунической войны Архимед организовал инженерную оборону Сиракуз от римских войск. Когда римляне высадили в Сицилии сухопутное войско, а под стенами Сиракуз появился римский флот под командованием Марцелла, то наступила очередь Архимеда. Предоставим слово греческому историку Плутарху, написавшему биографию Марцелла: «При двойной атаке римлян (с суши и с моря) сиракузцы онемели, пораженные ужасом. Что они могли противостоять таким силам, такой могущественной рати? Архимед пустил в ход свои машины. Сухопутная армия была поражена градом метательных снарядов и громадных камней, бросаемых с великой стремительностью. Ничто не могло противостоять их делу, они все низвергали пред собой и вносили смятение в ряды. Что касается флота — то вдруг с высоты стен бревна опускались, вследствие своего веса и природной скорости, на суда и топили их. Его военные машины заставили римлян отказаться от попыток взять город штурмом и вынудили их перейти к длительной осаде.

Работы

Работы Архимеда показывают, что он был прекрасно знаком с математикой и астрономией своего времени, и поражают глубиной проникновения в существо рассматриваемых Архимедом задач. Ряд работ имеет вид посланий к друзьям и коллегам. Иногда Архимед предварительно сообщал им без доказательств свои открытия, с тонкой иронией добавляя несколько неверных предложений.

Центральной темой математических работ Архимеда являются задачи на нахождение площадей поверхностей и объемов. Решение многих задач этого типа Архимед первоначально нашел, применяя механические соображения, по существу сводящиеся к методу «неделимых», а затем строго доказал методом исчерпывания, который он значительно развил. Рассмотрение Архимедом двусторонних оценок погрешности при проведении интеграционных процессов позволяет считать его предшественником не только И. Ньютона и Г. Лейбница, но и Г. Римана. Архимед вычислил площади эллипса, параболического сегмента, нашел площади поверхности конуса и шара, объемы шара и сферического сегмента, а также различных тел вращения и их сегментов.

Архимед исследовал свойства т. н. архимедовой спирали, дал построение касательной к этой спирали, нашел площадь ее витка. Здесь он выступает как предшественник методов дифференциального исчисления. Архимед рассмотрел также одну задачу изопериметрического типа. В ходе своих исследований он нашел сумму бесконечной геометрической прогрессии со знаменателем 1/4, что явилось первым примером появления в математике бесконечного ряда. При исследовании одной задачи, сводящейся к кубическому уравнению, Архимед выяснил роль характеристики, которая позже получила название дискриминанта.

Архимеду принадлежит формула для определения площади треугольника через три его стороны (неправильно именуемая формулой Герона). Архимед дал (не вполне исчерпывающую) теорию полуправильных выпуклых многогранников (архимедовы тела). Особое значение имеет «аксиома Архимеда»: из неравных отрезков меньший, будучи повторен достаточное число раз, превзойдет больший. Эта аксиома определяет т. н. архимедовскую упорядоченность, которая играет важную роль в современной математике. Архимед построил счисление, позволяющее записывать и называть весьма большие числа. Он с большой точностью вычислил значение числа ?и и указал пределы погрешности.

Механика постоянно находилась в круге интересов Архимеда. В одной из своих первых работ он исследует распределение нагрузок между опорами балки. Архимеду принадлежит определение понятия центра тяжести тела. Применяя, в частности, интеграционные методы, он нашел положение центра тяжести различных фигур и тел. Архимед дал математический вывод законов рычага. Ему приписывают гордую фразу: «Дай мне, где стать, и я сдвину Землю». Архимед заложил основы гидростатики и сформулировал основные положения этой дисциплины, в том числе знаменитый закон Архимеда. Последняя работа Архимеда посвящена исследованию равновесия плавающих тел. При этом он выделяет устойчивые положения равновесия.

Архимед занимался также астрономией. Он сконструировал прибор для определения видимого (углового) диаметра Солнца и нашел значение этого угла с поразительной точностью. При этом Архимед вводил поправку на размер зрачка. Он первым стал приводить наблюдения к центру Земли. Наконец, Архимед построил небесную сферу – механический прибор, на котором можно было наблюдать движения планет, фазы Луны, солнечные и лунные затмения.

Остановимся на результатах исследований Архимеда в области физики. Основные научные проблемы, выдвинутые развитием техники древнего мира, были в первую очередь проблемами статики. Строительная и военная техника была тесно связана с вопросами равновесия и подводила к выработке понятия центра тяжести. В основе этой техники лежал рычаг и другие простые механизмы. Машины, построенные с использованием этих механизмов, и в первую очередь рычага, помогли человеку «перехитрить» природу. Отсюда и пошло название «механика». Греческое слово «механе» означало орудие, приспособление, осадную или театральную машину, а также уловку, ухищрение.

В течение многих веков механика рассматривалась как наука о простых статических машинах. Ее основой были теория рычага, изложенная Архимедом в сочинении «О равновесии плоских фигур». В этой книге также содержатся определения центров тяжести треугольника, параллелограмма, трапеции, параболического сегмента, трапеции, боковые стороны которой являются дугами парабол. Не подлежит сомнению, что все законы, постулаты и другие результаты, данные в этой книге, получены Архимедом в результате длительного практического опыта, обобщением которого и явилась механика Архимеда.

Архимед прославился и другими механическими конструкциями. Изобретённый им бесконечный, или архимедов, винт для вычерпывания воды до сих пор применяется в Египте. Архимед построил планетарий или «небесную сферу», при движение которой можно было наблюдать движение пяти планет, восход Солнца и Луны, фазы и затмения Луны, исчезновение обоих тел за линией горизонта.

. Рассмотрим теперь знаменитый закон Архимеда, изложенный в его сочинении «О плавающих телах». На тело, погруженное в жидкость, действует сила, равная весу жидкости в объеме этого тела. Существует легенда, что Архимед пришел к своему закону, решая задачу: содержит ли золотая корона, заказанная Героном мастеру, посторонние примеси или нет. Однако, вероятно, мотивы работы Архимеда были все же более глубокими. Ведь Сиракузы были портовым и судостроительным городом. Вопросы плавания тел здесь решались ежедневно практически, и поэтому перед Архимедом стояла задача выяснения научной основы этих вопросов. В своей книге он разбирает не только условия плавания тел, но и вопрос об устойчивости равновесия плавающих тел различной геометрической формы. Научный гений Архимеда в этом сочинении, оставшемся, по-видимому, незаконченным, проявился с исключительной силой.

. Кроме математики и механики, Архимед занимался оптикой и астрономией. Имеются сведения о том, что Архимедом было написано не дошедшее до нас сочинение по оптике «Катоптрика». Из дошедших до нас отрывков, цитируемых авторами, видно, что Архимед хорошо знал зажигательные свойства вогнутых зеркал, проводил опыты по преломлению света, знал свойства изображений в плоских, выпуклых и вогнутых зеркалах.

. О занятиях Архимеда астрономией свидетельствуют рассказы о построенной им астрономической сфере, захваченной Марцеллом как военный трофей, и сочинение «Псаммит», в котором Архимед подсчитывает число песчинок во Вселенной. Сама постановка задачи представляет большой исторический интерес: точное естествознание впервые приступило к подсчетам космического масштаба, пользуясь неудобной системой чисел. Результат, полученный Архимедом, выражается в современных обозначениях числом 10х63. Кроме того, в сочинении Архимеда впервые в истории науки сопоставляются две системы мира: геоцентрическая и гелиоцентрическая (в центре Земля или Солнце). Архимед указывает, что «большинство астрономов называют миром шар, заключающийся между центрами Солнца и Земли».

Архимед сообщает далее, что Аристарх Самосский предполагает мир гораздо большим. «Действительно, он предполагает, что неподвижные звезды и Солнце находятся в покое, а Земля обращается вокруг Солнца по окружности круга, расположенного посередине между Солнцем и неподвижными звездами. «. Архимед интерпретирует мысль Аристарха как равенство отношения размеров мира к размерам Земли, отношению радиуса сферы неподвижных звезд к радиусу земной орбиты. Таким образом, Архимед принимает мир, хотя и очень большим, но конечным, что позволяет ему довести свой расчет до конца.

Хочется привести слова Плутарха: «Архимед был настолько горд наукой, что именно о тех своих открытиях, благодаря которым он приобрел славу . он не оставил ни одного сочинения». Хотя это и не совсем точно, но многих работ Архимеда мы действительно не знаем. Мы не знаем, например, конструкций его боевых машин, нам не известно, как он мог вычислять квадратные корни из больших чисел, и многое другое. «Поэтому нет оснований не верить написанному об Архимеде, что он жил как бы околдованный какою-то домашнею сиреною, постоянной его спутницей, заставляющей его забывать пищу, питье, всякие заботы о своем теле. Иногда, приведенный в баню, он чертил пальцем на золе очага геометрические фигуры, или проводил линии на умащенном маслом своем теле. Автор прекрасных открытий, он просил своих родственников поставить на его могиле цилиндр, включающий в себя конус и шар, и подписать отношение их объемов (3:2:1)», — так характеризовал Архимеда Плутарх. И в память об этом гении древности потомки Архимеда через века пронесут его радостный возглас, боевой клич науки: «Эврика!» — «Я нашел!».

Архимед был замечательным механиком-практиком и теоретиком, но основным делом его жизни была математика. По словам Плутарха, Архимед был просто одержим ею. Он забывал о пище, совершенно не заботился о себе. Его работы относились почти ко всем областям математики того времени: ему принадлежат замечательные исследования по геометрии, арифметике, алгебре. Так, он нашёл все полуправильные многогранники, которые теперь носят его имя, значительно развил учение о конических сечениях, дал геометрический способ решения кубических уравнений вида , корни которых он находил с помощью пересечения параболы и гиперболы. Архимед провёл и полное исследование этих уравнений, то есть нашёл, при каких условиях они будут иметь действительные положительные различные корни и при каких корни будут совпадать.

Остались отрывки работы Архимеда, в которой он развивает математическую теорию популярной в Греции игры (так называемой стомахии), предвосхищая, таким образом, более чем на 2 тыс. лет создание математической теории игр. Но главное его внимание было сосредоточено на трёх типах проблем:

  1. Определение площадей криволинейных фигур или соответственно, объёмов тел. Мы уже знаем, как определять площади прямолинейных фигур, площадь круга, объём призмы, пирамиды, цилиндра и конуса. Все это умели делать греки и до Архимеда. Но только он нашёл общий метод, позволяющий найти любую площадь или объём. Трудно переоценить значение этого метода, без которого была бы немыслима ни физика, ни астрономия. Идеи Архимеда легли в основу интегрального исчисления. Сам Архимед определил с помощью своего метода площади и объёмы почти всех тел, которые рассматривались в античной математике. Лучшим своим достижением он считал определение поверхности и объёма шара. Он просил выбить на своей могиле шар, вписанный в цилиндр.
  2. Пусть дана некоторая кривая линия. Как определить касательную в любой её точке? Или, если переложить эту проблему на язык физики, пусть нам известен путь некоторого тела в каждый момент времени. Как определить скорость его в любой точке? В школе учат, как проводить касательную к окружности. Древние греки умели, кроме того, находить касательные к эллипсу, гиперболе и параболе. Первый общий метод решения и этой задачи был найден Архимедом. Этот метод впоследствии лёг в основу дифференциального исчисления.
  3. В математике, физике и астрономии очень важно уметь находить наибольшие и наименьшие значения изменяющихся величин — их экстремумы. Например, как среди цилиндров, вписанных в шар, найти цилиндр, имеющий наибольший объём? Все такие задачи в настоящее время могут быть решены с помощью дифференциального исчисления. Архимед первым увидел связь этих задач с проблемами определения касательных и показал, как с можно решать задачи на экстремумы. Огромное значение для развития математики имело вычисленное Архимедом отношение длины окружности к диаметру.

Легенды

Уже при жизни Архимеда вокруг его имени создавались легенды, поводом для которых служили его поразительные изобретения, производившие ошеломляющее действие на современников. Известен рассказ о том как Архимед сумел определить, сделана ли корона царя Гиерона из чистого золота или ювелир подмешал туда значительное количество серебра. Удельный вес золота был известен, но трудность состояла в том, чтобы точно определить объём короны: ведь она имела неправильную форму! Архимед всё время размышлял над этой задачей. Как-то он принимал ванну, и тут ему пришла в голову блестящая идея: погружая корону в воду, можно определить её объём, измерив, объём вытесненной ею воды. Согласно легенде, Архимед выскочил голый на улицу с криком «Эврика!», т. е, «Нашёл!». И действительно в этот момент был открыт основной закон гидростатики.

Другая легенда рассказывает, что построенный Гиероном в подарок египетскому царю Птолемею роскошный корабль «Сирокосия» никак не удавалось спустить на воду. Архимед соорудил систему блоков (полиспаст), с помощью которой он смог проделать эту работу одним движением руки. Этот случай или размышления Архимеда над принципом рычага послужили поводом для его крылатых слов: «Дайте мне точку опоры, и я сдвину Землю».

Сохранилась легенда о том, что Архимед использовал в борьбе с римским флотом вогнутые зеркала, поджигая корабли противника сфокусированными солнечными лучами.

По преданию Архимед сжег вражеские корабли с помощью зеркал. Но как ему это удалось — неизвестно.

Смерть

Инженерный гений Архимеда с особой силой проявился во время осады Сиракуз римлянами в 212 до н. э.. А ведь в это время ему было уже 75 лет! Построенные Архимедом мощные метательные машины забрасывали римские войска тяжёлыми камнями. Думая, что они будут в безопасности у самых стен города, римляне кинулись туда, но в это время лёгкие метательные машины близкого действия забросали их градом ядер. Мощные краны захватывали железными крюками корабли, приподнимали их кверху, а затем бросали вниз, так что корабли переворачивались и тонули.

Римляне вынуждены были отказаться от мысли взять город штурмом и перешли к осаде. Знаменитый историк древности Полибий писал: «Такова чудесная сила одного человека, одного дарования, умело направленного на какое-либо дело… римляне могли бы быстро овладеть городом, если бы кто-либо изъял из среды сиракузян одного старца». Но даже во время осады Архимед не давал покоя римлянам.

Только вследствие измены Сиракузы были взяты римлянами осенью 212 до н. э.. При этом Архимед был убит.

Легенды о смерти:

По первой, в разгар боя он сидел на пороге своего дома, углубленно размышляя над чертежами, сделанными им прямо на дорожном песке. В это время пробегавший мимо римский воин наступил на чертеж, и возмущенный ученый бросился на римлянина с криком:
Не тронь моих чертежей!
Эта фраза стоила Архимеду жизни. Солдат остановился и хладнокровно зарубил старика мечом.

Вторая версия гласит, что полководец римлян Марцелл специально послал воина на поиски Архимеда. Воин разыскал ученого и сказал:
Иди со мной, тебя зовет Марцелл.
Какой еще Марцелл?! Я должен решить задачу!
Разгневанный римлянин выхватил меч и убил Архимеда.

По третьей версии, воин ворвался в дом Архимеда для грабежа, занес меч на хозяина, а тот только и успел крикнуть:
Остановись, подожди хотя бы немного. Я хочу закончить решение задачи, а потом делай что хочешь!

Наконец, четвертая версия такова: Архимед сам отправился к Марцеллу, чтобы отнести ему свои приборы для измерения величины Солнца. По дороге его ноша привлекла внимание римских солдат. Они решили, что ученый несет в ларце золото или драгоценности, и, недолго думая, перерезали ему горло.

Таковы легенды. Однако многие историки полагают, что Архимед был убит не случайно — ведь его ум стоил в те времена целой армии.

После смерти

В отличие от Евклида, Архимеда вспоминали в античности лишь от случая к случаю. Если мы что-то знаем о его работах, то лишь благодаря тому интересу, который питали к ним в Константинополе в 6–9 в. Эвтокий, математик, родившийся в конце 5 в., прокомментировал по крайней мере три работы Архимеда, по-видимому, наиболее известные в то время: О шаре и цилиндре, Об измерении круга и О равновесии плоских фигур. Работы Архимеда и комментарии Эвтокия изучали и преподавали математики Анфимий из Тралл и Исидор из Милета, архитекторы собора св. Софии, возведенного в Константинополе в правление императора Юстиниана. Реформа преподавания математики, которую проводил в Константинополе в 9 в. Лев Фессалоникийский, по-видимому, способствовала собиранию работ Архимеда. Тогда же он стал известен мусульманским математикам. Теперь мы видим, что арабским авторам недоставало некоторых наиболее важных работ Архимеда, таких как О квадратуре параболы, О спиралях, О коноидах и сфероидах, Исчисление песчинок и О методе. Но в целом арабы овладели методами, изложенными в других работах Архимеда, и нередко блестяще ими пользовались.

Средневековые латиноязычные ученые впервые услышали об Архимеде в 12 в., когда появились два перевода с арабского на латынь его сочинения Об измерении круга. Лучший перевод принадлежал знаменитому переводчику Герарду Кремонскому, и в последующие три столетия он послужил основой многих изложений и расширенных версий. Герарду принадлежал также перевод трактата Слова сынов Моисеевых арабского математика 9 в. Бану Мусы, в котором приводились теоремы из сочинения Архимеда О шаре и цилиндре с доказательством, аналогичным приведенному у Архимеда. В начале 13 в. Иоанн де Тинемюэ перевел сочинение О криволинейных поверхностях, по которому видно, что автор был знаком с другой работой Архимеда – О шаре и цилиндре.

В 1269 доминиканец Вильгельм из Мербеке перевел с древнегреческого весь корпус работ Архимеда, кроме Исчисления песчинок, Метода и небольших сочинений Задача о быках и Стомахион. Для перевода Вильгельм из Мербеке использовал две из трех известных нам византийских рукописей (рукописи А и В). Мы можем проследить историю всех трех. Первая из них (рукопись А), источник всех копий, снятых в эпоху Возрождения, по-видимому, была утрачена примерно в 1544. Вторая рукопись (рукопись В), содержавшая работы Архимеда по механике, в том числе сочинение О плавающих телах, исчезла в 14 в. Копий с нее снято не было. Третья рукопись (рукопись С) не была известна до 1899, а изучать ее стали лишь с 1906. Именно рукопись С стала драгоценной находкой, так как содержала великолепное сочинение О методе, известное ранее лишь по отрывочным фрагментам, и древнегреческий текст О плавающих телах, исчезнувший после утраты в 14 в. рукописи В, которую использовал при переводе на латынь Вильгельм из Мербеке. Этот перевод имел хождение в 14 в. в Париже. Он использовался также Якобом Кремонским, когда в середине 15 в. тот предпринял новый перевод корпуса сочинений Архимеда, входивших в рукопись А (т.е. за исключением сочинения О плавающих телах). Именно этот перевод, несколько поправленный Региомонтаном, был опубликован в 1644 в первом греческом издании трудов Архимеда, хотя некоторые переводы Вильгельма из Мербеке были изданы в 1501 и 1543. После 1544 известность Архимеда начала возрастать, и его методы оказали значительное влияние на таких ученых, как Симон Стевин и Галилей, а тем самым, хотя и косвенно, воздействовали на формирование современной механики.

В IX—XI вв. работы Архимеда переводились на арабский язык, которые с XIII в. появляются в Западной Европе в латинском переводе. С XVI в. начинают выходить печатные издания Архимеда, в XVII–XIX вв. они переводятся на новые языки. Первое издание отдельных трудов Архимеда на русском языке относится к 1823 году. Некоторые работы Архимеда до нас не дошли или известны лишь в отрывках, а его «Послание к Эратосфену» было найдено лишь в 1906.

Недавно были найдены неизвестные ранее труды Архимеда. Американские учёные из Музея искусств имени Уолтерса в Балтиморе обнаружили несколько неизвестных ранее текстов, написанных древнегреческим математиком Архимедом. Уникальные записи были скрыты под картинами, нанесёнными поверх текста.

Специалисты сумели прочесть трактаты Архимеда, не разрушая поверхностный слой. Тексты были написаны на пергаменте из козлиной шкуры в X веке. Тремя веками позднее свитки попали в иерусалимский монастырь. Монахи превратили пергамент в палимпсест — счистили тексты Архимеда, нанесли поверх них греческие православные молитвы, разрезали листы пополам и сделали из них 174-страничную книгу. Поскольку страницы сшивались в произвольном порядке, некоторые фрагменты трудов Архимеда могут быть безвозвратно утеряны.

В XX веке какие-то «умельцы», желая увеличить ценность этой сенсационной находки и продать её подороже, дорисовали золотой краской на пергаменте иллюстрации религиозного содержания. В результате оригинальный текст был почти полностью уничтожен и расшифровать его учёные смогли только с помощью рентген-флюоресцентной аппаратуры, которую обычно применяют геологи и биологи. Пергамент был пропущен через синхротрон (ускоритель электронов), и, благодаря тому, что древний писец использовал чернила с железосодержащим пигментом, текст стал различим. Работа эта была очень кропотливой — на восстановление текста одной страницы уходило около двенадцати часов.

Среди чудом обнаруженных произведений Архимеда — «Метод механических теорем» и «Стомахион», ранее известные лишь по одной копии, а также уникальный трактат «О плавающих телах». В настоящее время специалисты занимаются изучением трудов великого математика и философа.

www.istorya.ru

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

of your page —>